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ABSTRACT

The motion amplification device with a viscous damper has been recognized as an
effective solution to mitigate wind or seismic excitation especially for stiff-type
structural systems. These devices are designed to amplify a small interstory drift
to amplify the stroke of dampers attached. The efficiency of such devices with
dampers relies not only on geometric configurations but is highly dependent on
the stiffness of support elements. In this paper, a “scissor-jack” type of motion
amplification device, a “toggle brace damper” system, is investigated. A
procedure for determining the relationship between the motion amplification
factors with geometry of the toggle brace mechanism, which includes the
elongation of the braces is proposed. It is demonstrated that the amplification
factor is not merely a function of toggle brace configuration; it also depends on
the brace stiffness, including toggle brace elongation. Accordingly, a mathematic
model in the complex modulus of the toggle brace damper system is established
and results are presented. The analysis results indicate that the efficiency of the
toggle brace damper system significantly depends on support toggle brace
stiffness, and this is an important design consideration.

Introduction

Viscous dampers have proved to be a very efficient device to absorb and dissipate large
amounts of energy from earthquake or wind in order to maintain the structural response within
acceptable limits. These devices are ideally suited for flexible structures. Recent efforts were
dedicated to find methods to improve the efficiency of the dampers to stiff structures. Various
motion amplification devices have been discussed by Hanson and Soong (2001) to amplify small
deflections, which may render viscous damping device ineffective. The “scissor-jack” type of
motion amplification devices, so called “toggle brace damper”, has been proposed and patented
by Taylor in 1996. Constantinou, et. al. (2001) demonstrated that the toggle brace damper
system can improve the efficiency of this energy dissipation device by magnifying the damper
displacement and also verified its ability to enhance the efficiency of the toggle brace damper
system through both cyclic loading tests and shaking table tests with a single-degree-of-freedom
steel frame. McNamara and Huang (2000) adopted this concept, applied the toggle brace damper
system to a 39-story office building in Boston, and was completed in 2000. Their computer
analysis showed that the stiffness of the toggle braces played a very important role for enhancing
the effectiveness of the overall system damper. In that application, they revised the attachment of
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the lower brace proposed by Constantinou, et. al. (2001) and installed it directly into the beam-
column joints, which eliminated the deflection from the beam. Hwang, et.al (2005) proved that
this modification was necessary to improve the effectiveness of the toggle brace damper system
from his theoretical analysis and his laboratory tests. Shao and Miyamoto (2002) also used the
toggle brace damper to retrofit the torsional irregularity for stiff concrete shear wall structures to
achieve the Enhanced Rehabilitation Objective of FEMA 356. Berton, et. al. (2004) proposed the
displacement amplification device constructed using a combination of two rack and pinion
mechanisms. From his labor tests, no discussion of the effectiveness of the damper was made.
Ribakov and Reinhorn (2003) proposed an optimized solution for the amplified structural
damping. The amplification factors in both papers used the concept proposed by Constantinou,
et. al. (2001), which was the function of the toggle brace configurations. However, this may
result in overestimating amplification effect, including the toggle brace stiffness and reduce the
overall effectiveness of viscous damper attached. Huang (2004) reestablished equilibrium
equations and compatibility relationships by incorporating the toggle brace elongations in a series
of coupling equations based on the simple static relationship assumptions. The coupling
equations can be solved by using linear programming method. Parametric studies are also given
according to the variation of the story drifts, damping coefficients, toggle brace stiffness, etc. In
this paper, a simple constitutive relationship of the toggle brace damper system in complex
modulus form is established for harmonic excitation instead of static relationship assumption.
The analysis results show that the efficiency of the toggle brace damper system is highly
dependant on the toggle brace stiffness along with the damper damping value. Compared with
other bending types of motion amplification devices, the toggle brace damper proved to be one of
the most effective devices from the lever mechanism because stiffer properties can be provided.

Amplification Factors of Toggle Brace Damper Systems

The revised lower toggle brace damper configuration proposed by McNamara and Huang
(2000) is illustrated in Figure 1. The attachment of damper in the toggle brace damper system
directly connected to the beam-column joint rather than the beam, because the deformation of the
beam due to damper force exerted on will reduce the effective damping contributed by the
damper. Also, it will significantly affect the design of the floor beam.
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Figure 1 - Toggle Brace Damper (TBD) System Configuration

The geometric relation between the deformed and undeformed frame was established by
Huang (2004) according to its horizontal and vertical direction geometric relation below,

L,(1+g,)cos(a))+L,(1+g,)cos(a,)=L+A Eq. 1



L,(+¢g,)sin(a))+L,(1+¢€,)sin(ay) = tan(a) L Eq. 2
where A is the story drift; L is the frame bay length and A is the mterstory height. Further, the
ratio of the story height and frame bay length can be defined by o = tan’ (H/L) L, and Ly are the
length of lower and upper toggle braces. &, and &, are the strains of lower and upper brace
members with elongation (¢ = AL/L). o, and o are the horizontal angles of lower and upper
braces after frame distortion with prime symbol. The equilibrium equations at pivot joint can be
written according to horizontal and vertical directions

EA e, cos(a))—EA, g, cos(ay)=FDcos(a)) Egq. 3
—EA,g,sin(a}) + EA,¢g, sin(ay) = FDsin(a!) Eq. 4
where the damper force (FD) can be defined as the linear function of the velocity FD = cv and ¢
is the damper coefficient, v is the relative velocity of the damper. 4, and 4}, are the cross-section
area of lower and upper brace member and E is the modulus of the braces member. ¢ is the

angle of the damper to horizontal beam after frame deformed. To simplify the equation, we have
the simple geometric relation shown as

L,(1+¢,) B L
sin(a!)  sin(a! + o) Eq. 5

Relative displacement () or the deformation of the damper is calculated by the
difference of the damper displacement before and after frame deformed

8, =[L,(1+&)P+I*-2L,(1+¢,)Lcos(al) —y|L2 + [} 2L, Eq. 6

where o, and «; are the horizontal angle of the lower brace and upper brace angle before the
frame deformed. The relative velocity (v) of the damper can be calculated,

ds,(A) dA Eq. 7
dA  dt

Assuming a steady harmonic excitation with radian frequency () is applied at floor level,
the relative velocity of the viscous damper in Eq. 7 can be simplified by v = Am(4) o A where
the amplification factor Am(4) = dds(4)/dA. The damper forces FD = ¢ Am(4) w A for linear
velocity-related damper.

d
V= B.(8)=

For given frame bay length (L), story height (H), the lengths of the lower and upper brace
members (L,, L) and brace section properties (E, A, and Ap), damping constant (c), the six
unknown variables &, @ @, &, & and Am can be solved by combining Equations 1 through 6 as
the function of the story drift (4). The axial forces of lower brace (FA4) and upper brace (FB) are
simply derived in terms of the damper force (D) from Egs.3 and 4,

sin(a) + ) FB< FD sin(a; +a,) Eq. 8

FA=FD ;
sin(e, —a)) sin(er, — cx))



The damper displacement or stroke corresponding to story drift comparison with and without,
including the elongation of the braces, is shown in Figure 2. The amplification factor (6c/4)
keeps constant with the brace stiffness. Particularly, the amplification factor is reduced in
significant amount as story drift gets larger. Additional discussions were given by Huang (2004)
for other design parameters, such as brace stiffness and damping value.
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Figure 2 - The Displacement of Damper vs. Story Drift

Considering a single-degree-of-freedom (SDOF) dynamic system, and define x = A(?), the
basic differential motion equation with mass (m) can be expressed by,

mi + f(x, %) = g(t) Eq. 9

Applied force g(t) can be wind force or earthquake excitation, @ is the natural radian
frequency of structure. For linear damping, the restore force is,

f(x,%) = cAmf(x)X + mo *x Eq. 10
Where the force amplification factor Amf as a function of story drift (x) can be written,

d5,(x) sin(a; + ;)
dx sin(ey - ;)

it ()= Eq. 11

cos(e)

From above derivation, no small story drift is required. It can be applied to the large
deformation of story drift. From Equation 11, the force amplification is combined with
displacement amplification and geometry amplification, in other words, the small damper force
can exert the large brace forces to resist external lateral forces, so called leverage effect.

Therefore, softening the brace stiffness will decrease the amplification effect and further reduce
the effectiveness of the damper system.



Complex Modulus of Toggle Brace Damper Systems for Harmonic Excitation

Equations 1 to 6 outline the geometric relationship of the motion amplification and force
amplification with story drift by incorporating elongations of the braces. In dynamic response
analysis for the toggle brace damper system, dissipated energy and phase angle will directly
determine the efficiency of the toggle brace damper system. The toggle brace damper system can
be mathematically described as a series of the spring-dashpot model with combination of
Maxwell model and Voigt model, (see Figure 3)

K2 C2
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— AN

K1

Figure - 3 Mathematical Model for the Toggle Brace Damper

where K1 is the structural stiffness from the story frame, K2 is the toggle brace stiffness, and C2
is the damping value of the damper. Differentiate Equations 1, 2, and 6 as a function of the story
drift, and simplify with Equation 5. We will have the following relation.

sin(fe! +¢)) 1 Lds, 1 Ldg sin(g—a) 1 d5(A) dA
sin(e) + o)) cos(ayy) dt cos(e) dt  sin(al+o)) cos(ey) dt T odt Eq. 18

For the linear spring-damping model, we have the following relationships by their definitions.

L,de, L, dF4 L,de, L, dFB ds,(A) FD .

dt  E4, dt dt ~ E4, dt dt c Eq. 19

From Equation18, the toggle brace damper system has the form of Maxwell model. Phase angles
will be determined by ratio of damping value to brace stiffness (so called characteristic time).
The horizontal components force of the upper brace F = FB cos (a’y). Since the variation of the
motion amplification is invariant to story drift (see Figure 3), assume the relationships of
Equation 8 still hold, reorganize Equation 18 with Equation 19, we have,

(sm<a;+a,:> 1 ) I, +[ L, )zi d_F+(sin(a,:—a;> 1 )zﬁ_d_A
sin(e) + ) cos(ey)) E4, \cos(a;)) E4, |dt \sin(a;+ ;) cos(ey)) ¢ Tt Eq. 20

The generalized brace stiffness K2 and damping value C2 in Equation 18 can be defined by,

Au Ab

. 2
[sm(ac’ +a;)

K2=Ecos’ (&)
AL +AL
sin(ozc’+a;)] bTe e

= r 14 2
C2=ccos’(a] )(%t—:i%}
' b Eq. 21

Constitutive equation with complex modulus expression is:

F=(K'(0)+iK"(@))A Eq. 22



By the definitions, the loss factor is n(®)=K”(®0)/K’(®); the dissipated energy is Wd (o) ==
K”((D)Az; and relaxation time is T = C2/K2, where

2
K1+ K2)(w7)" + K1 K"(0)= Cw

Klw)= 1+ (wr)* 1+ (w7)* Eg. 23

The applied story force (Fs) on the structures for harmonic excitation with the frequency of o can
be expressed by:

K"
Fs=K'(w)A sin(wt) + Iaglw) Aw cos(wt) Eq. 24
The restore force in Equation10 can be recast in form of complex stiffness,

Il(a))
|| Eq. 25

From above the complex stiffness analysis, the toggle brace damper system shows visco-
elastic behavior. In other words, the efficiency of the toggle brace damper system largely relies
on the brace stiffness, damping value, and the structural stiffness. The comparison of the
dynamic response, the SDOF system from SAP2000 analysis, with theoretical solution for the
harmonic excitation is shown in Figure 4 with good matching results.

f(x,%) =K' (0)x +

Results for a practical example

Following results are calculated based on the bay length L = 31; story height H = 12’-
6”; lower brace angle o, = 19° with the length of L, = 24’; upper brace angle a, = 29.5° with the
length of L, = 9’-5”. The cross-section area of both braces Aa5=20in’. The story stiffness K1
= 462 kips/in or equivalent structure radian frequency of 1.216rad/s. For target story drift A =
0.8 inch, the motion amplification factor 4m = 2.9 and force amplification factor Amf = 6.1. The
damping value ¢ = 20 kips-sec/inch and the excitation radian frequency @ =1.257rad/s. The
efficiency of the toggle brace system in terms of the dissipated energy, phase angle, and loss
factor with different brace stiffness, damping value, and story stiffness along with varied
excitation frequencies are listed from Figures 5 to 17.

Camparison of SAP2000 with Theoritical Solution
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Effect of Toggle Brace Stiffness on the Efficiency of the Damper System
In the analysis, the area of the toggle brace are varied from 10in%, 20in?, and 40in” shown

in Figure 5 under the fixed excitation frequency. The results show that increasing the stiffness of

brace member greatly increases the area of the hysteric loop area or dissipated energy. This

implies that adding toggle brace stiffness will improve the efficiency of the toggle brace damper

system. The Figure 8 shows that the energy (Wd) will be dissipated as the excitation frequency

rising and reach the peak, gradually drop as the frequency of the excitation gets high. The stiffer

toggle brace will improve the efficiency of the toggle brace system even at the high frequency
contents of the excitation.

The phase angle is another important index to reveal the efficiency of the toggle brace
system. The phase shift, which is a function to the damper and toggle stiffness, is what causes
the reduced effectiveness of the system. When this phase angle approaches zero degrees, the
device will be completely ineffective, regardless of the device damping ratio. Two types of the
phase angles are discussed to reflect the toggle brace system combined with or Wlthout story
stiffness. The first phase angle of the toggle brace damper system is defined by tan” TK2/C2),
which represents the toggle braces in series spring model (Maxwell model). The result is shown
in Figure 10 that the phase angle will shift more as the excitation frequency getting higher. The
higher stiffness of the toggle braces definitely give less of the phase angle shift. The second
phase angle is defined by tan” (K ”(0)/K (1)), which includes structural stiffness to represent the
iso-strain model (Voigt model). The results in Figure 12 show that stiffer brace has the larger
phase angle, so the damper will be more effective. The phase angle shifting is also a function of
the excitation frequency.

The loss factor can be defined by ratio of loss modulus to storage modulus. From
Equation 24, storage modulus K ’(@) provides the “elastic” stiffness of the toggle brace system
and loss modulus K (@) represents velocity-dependent or viscous stiffness of the device. The
relationships of the loss factor are plotted as the function of the excitation frequencies shown in
figure 16. The loss factor gradually decline as the excitation frequency increased at high
frequency range. The stiffer braces have larger loss factor. From above discussion, the stiffer of
the braces is the more efficient of the toggle brace damper system will be.

Effect of Damping Value on the Efficiency of the Toggle Brace Damper System

Three damping values of 10 kips-sec/in, 20 kips-sec/in, and 40 kips-sec/in are
investigated and plotted in Figure 7. Higher damping value will add additional stiffness to the
toggle brace damper system but more energy may not be dissipated because it depends on the
excitation frequency (see Figure 9 and phase angle shift). Small damping value produces more
energy dissipated for the high-frequency range. The phase angle for both, including and not
including structural stiffness in Figures 11 and 13, are more favorable towards small damping
value of the damper. Similar trends are also shown in figure 15 for the loss factor versus
excitation frequency. It implies that the larger damping value of the viscous damper won’t
increase the dissipated energy.

Effect of Structural Stiffness on the Efficiency of the Toggle Brace Damper System

The toggle brace damper system with different structural stiffness (113 kip-in, 462 kip-in
and 1953 kip-in) is also studied. From Figure 6, it can be seen that the area of hysteric loop has
little change with the structural stiffness. From the phase angle plot in Figure 14, the toggle




brace damper system will be more efficient for the softer structural system. In other words, the
stronger of the toggle brace damper system will bring more resistance. Similar results are also
obtained from Figure 17.

Conclusions

The efficiency of the toggle brace damper system is directly related to the effective
stiffness of the braces. The elongation of the toggle braces must be included in the analysis. The
system works like a Maxwell model, where the damper is in series with linear springs. The
damper is acting at its full capacity if the braces are very stiff, otherwise the force transmitted to
damper can be very small. Adding damping value will not increase efficiency of the damper
system. Because of the sensitivity of the system to toggle stiffness, engineers must carefully
consider all other sources of the deformation, which may produce loss of the effectiveness in the
toggle brace system, such as floor diaphragm deformations; axial and flexural deformation of
columns and beams; panel zone deformation; the damper linkage; and all connections associated
with. All structural elements in the load path between the damping system and the lateral force
resisting system must be included in the analysis to accurately predict the efficiency of the
damper system. Also, as noted from complex modulus analysis, the efficiency of the toggle
brace damper system also varies with the excitation frequencies.
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