Proposed Seismic Detailing Criteria for Piers and Wharves

Robert E. Harn, P.E., M.ASCE, Timothy W. Mays, Ph.D., P.E., M.ASCE, Gayle S. Johnson, P.E., M.ASCE

Overview

- Update on proposed seismic code
- Present goals of detailing provisions
- Review performance of several pile to deck connections
- Summarize spiral requirements

Update on Proposed Seismic Code

- New ASCE standard, "Seismic Design of Piers and Wharves" under development for 4 years
- Codifies current practice of performance-based seismic design
- Same format and legal standing as ASCE 7
- Pile supported structures only
- Volunteer effort

Proposed Table of Contents in Standard

- Chapter 1 General
- Chapter 2 Seismic Performance Requirements
- Chapter 3 Design Approach
- Chapter 4 Geotechnical Considerations
- Chapter 5 Force Based Analysis and Design
- Chapter 6 Displacement Based Analysis and Design
- **Chapter 7 Design and Detailing Considerations**

Chapter 7 Table of Contents

- 7.1 Introduction
- 7.2 Definitions
- 7.3 Symbols and Notation
- 7.4 Pile to Deck Connections
- 7.5 Confinement
- 7.6 Joint Region Dowel Anchorage
- 7.7 Joint Shear
- 7.8 Joint Detailing
- 7.9 Decks
- 7.10 Constructibility

Goals of Detailing Provisions

- Include all commonly used pile connections
 - Backed by testing
 - Ductile and suitable for seismic
- Include commonly used deck systems.
- Use existing codes
 - MOTEMS
 - POLA
 - POLB
- Address seismic detailing issues unique to piers and wharves
 - Pile driving tolerances
 - Pile cut-offs and build-ups

Pile to Deck Connection Testing

- Significant recent research and test data for prestressed concrete piles
- Limited research and test data for pipe piles
- Presentation focus is on prestressed concrete piles

Example Pipe Pile Connections

Example Prestressed Concrete Pile Connections

Prestressed Concrete Dowelled Connection Test Overview

- Define terms
- Review typical behavior
 - Strong pile
 - Weak interface
- POLA pile tests
- UW pile tests
- Summary

Pile to Deck Connection Terms

Typical Behavior of a Prestressed Concrete Pile Dowelled Connection

POLA Seismic Pile Tests (Ref. 2, 3)

- 36" deck
- 24" Octagonal Pile
- 16 0.6" dia. Strand
- 8 #10 dowels
- W20 @ 2.5 Spiral

POLA Seismic Pile Behavior (Ref. 2, 3)

Slab Prying $\mu_{\Delta} = 1.5$ (1.2% drift)

Pile Crushing μ_{Δ} = 3 (2.4% drift)

Deck Crushing $\mu_{\Delta} = 2$ (1.6% drift)

Test Ended μ_{Δ} = 16 (12.9% drift)

TIMI Building on the Past Respecting the Future

POLA Full Scale Connection Tests (Ref. 4)

Test Frame (UCSD 2007)

Deck Prying Spall & Interface Gap

Deck

In-Ground Hinge

TIMI Building on the Post, Respecting the Future

POLA Secondary Seismic Pile Tests (Ref. 2,3)

- 24" deck (600mm)
- 4-# 9 headed dowels
- 16 0.6 in. strands

POLA Secondary Pile Behavior (Ref. 2,3)

Deck Spalling μ_{Δ} = 3 (1.5% drift)

Pile Crushing $\mu_{\Delta} = 6$ (3.4% drift)

Spall Removed μ_{Δ} = 4 (2.3% drift)

Test Ended μ_{Δ} =18 (10% drift)

2008 UW / NEES Test on Isolated Interface (Ref. 5)

UW / NEES Isolated Interface Behavior (Ref. 5)

2.5% Drift

5% Drift

8.4% Drift

Possible Improvement to Isolated Interface Connection (verify by testing)

I ITM Building on the Past Respecting the Futu

Summary of Dowelled Connection Tests

- Connections performed as expected
- Pile rocking dominated performance
- Interface gap complicates shear transfer
- Deck spalling may be preventable
- Interface isolation appears promising if positive shear transfer is provided

Possible Methods to Minimize Deck Spalling

Pile Spiral Confinement Requirements

- Proposed minimum spiral requirements less than ACI 318
 - $-\rho_s = 0.007$ in the ductile region
 - $-\rho_s = 0.005$ outside the ductile region
- Spiral amount based on capacity versus demand analyses
 - Pile shear
 - Rotation in plastic hinge zones
 - Joint shear
- Spiral development requirements same as ACI 318.

23

Presentation Summary

- Connections considered
 - Pipe piles
 - Prestressed concrete piles
- Focused on prestressed concrete piles
- Presented damage reduction strategies
- Spiral requirements summarized

24

Acknowledgments

Associates

- 1. Gayle Johnson
- 2. Tim Mays
- 3. COPRI committee members

References

- POLA Code 07, 2007, The Port of Los Angeles Seismic Code, http://www.polaseismic.com/polacode.htm
- 2. Krier, C.J., Restrepo, J. I., Blandon, C.A., 2008, Seismic Testing of a Full-Scale Pile to Deck Connections, University of California at San Diego.
- 3. Restrepo, J.I., Yin, P., Jaradat, O.A., Weismair, M., 2007. "Performance of New Pile to Deck Connections Under Earthquakes", Proceedings of the 2007 ASCE Ports 2007 Congress, San Diego, CA.
- 4. Blandon, C.A., Seismic Analysis and design of Pile Supported Wharves, Rose School, Pavia Italy, 2007.
- 5. Jellin, A. R., 2008, Improved Seismic Connections for Pile-Wharf Construction, University of Washington, Seattle, WA.

TIMI Building on the Past, Respecting the Futur